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Abstract. In 2017, Ward Beullens et al. submitted Lifted Unbalanced
Oil and Vinegar [3], which is a modification to the Unbalanced Oil and
Vinegar Scheme by Patarin. Previously, Ding et al. proposed the Sub-
field Differential Attack [22] which prompted a change of parameters by
the authors of LUOV for the second round of the NIST post quantum
standardization competition [4].

In this paper we propose a modification to the Subfield Differential
Attack called the Nested Subset Differential Attack which fully breaks
half of the parameter sets put forward. We also show by experimentation
that this attack is practically possible to do in under 210min for the level
I security parameters and not just a theoretical attack. The Nested Sub-
set Differential attack is a large improvement of the Subfield differential
attack which can be used in real world circumstances. Moreover, we will
only use what is called the “lifted” structure of LUOV, and our attack
can be thought as a development of solving “lifted” quadratic systems.

1 Introduction

1.1 Signature Schemes, Post-quantum Cryptography and the NIST
Post Quantum Standardization

Signature schemes allow one to digitally sign a document. These were first the-
oretically proposed by Whitfield Diffie and Martin Hellman using public key
cryptography in [12]. The first and still most commonly used scheme is that of
RSA made by Rivest, Shamir, and Adleman [35]. As technology and long distance
communication become increasingly more a part of everyone’s life, it becomes
vital that one can verify who sent them a message and sign off on any message
they intend to send. However, quantum computers utilizing Shor’s algorithm
threaten the security of the RSA scheme and many others now in use [37]. With
the recent progress of building quantum computers, post-quantum cryptography
able to resist quantum attacks has become a central research topic [1,7,8,30].
In 2016, NIST put out a call for proposals for post-quantum cryptosystems for
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standardization. These cryptosystems, though using classical computing in their
operations, would resist quantum attacks [31]. We are currently in the third
round of the “competition,” with many different types of schemes being pro-
posed. Multivariate cryptography is one family of post-quantum cryptosystems
which is promising to resist quantum attacks [13,16].

1.2 Multivariate Cryptography

Public key encryption and signature schemes rely on a trapdoor function, one
which is very difficult to invert except if one has special knowledge about the
specific function. Multivariate cryptography bases its trapdoors on the difficulty
of solving a random system of m polynomials in n variables over a finite field.
For efficiency these polynomials are generally of degree 2. This has been proven
to be NP hard [25], and thus is a good candidate for a public key cryptosys-
tem. Moreover, working over these finite fields is often more efficient than older
number-theory based methods like RSA. The difficulty lies in the fact that, as
these systems must be invertible for the user and thus require a trapdoor, they
are not truly random and must have a specific form which undermines the sup-
posed NP hardness of solving them. Generally their special form is hidden by
composition by invertible affine maps. Though there are interesting and practi-
cal multivariate encryption schemes [17,38,39], multivariate schemes are better
known for simple and efficient signature scheme.

The first real breakthrough for multivariate cryptography was the MI or C∗

cryptosystem proposed by Matsumoto and Imai in 1988 [29]. Their insight was to
use the correspondence ψ between a n dimensional vector space kn over a finite
field k and a n degree extension K over k. They constructed their univariate
trapdoor function F : K → K over the large field which they were able to
solve due to its special shape, and then composed it with two invertible affine
maps S ,T : kn → kn hiding its structure. Their public key is then P =
S ◦ψ◦F ◦ψ−1◦T . Though broken today, the MI cryptosystem is the inspiration
for all “big field” schemes which have their trapdoor over a larger field. But the
attack against MI is the inspiration for what are called oil and vinegar schemes,
which LUOV is a extension of. The Linearization Equation Attack was developed
by Patarin [32]. To be brief, Patarin discovered that plain-text/cipher-text pairs
(x,y) will satisfy equations (called the linearization equations) of the form

∑
αijxiyj +

∑
βixi +

∑
γiyi + δ = 0

Collecting enough such pairs and plugging them into the above equation
produces linear equations in the αij ’s, βi’s, γi’s, and δ which then can be solved
for. Then for any cipher-text y, its corresponding plain-text x will satisfy the
linear equations found by plugging in y into the linearization equations. This
will either solve for the x directly if enough linear equations were found or at
least massively increase the efficiency of other direct attacks of solving for x. So
a quadratic problem becomes linear and thus easy to solve.
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1.3 Oil and Vinegar Schemes

Inspired by the Linearization Equation Attack, Patarin introduced the Oil and
Vinegar scheme [33]. The key idea is to reduce the problem of solving a quadratic
system of equations into solving a linear system by separating the variables into
two types, the vinegar variables which can be guessed for and the oil variables
which will be solved for. Let F be a (generally small) finite field, m and v be
two integers, and n = m + v. The central map F : Fn → F

m is a quadratic map
whose components f1, . . . , fm are in the form

fk(X) =
v∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk

where each coefficient is in F. Here the set of variables V = {x1, . . . , xv} are called
the vinegar variables, and the set O = {xv+1, . . . , xn} are the oil variables. While
the vinegar variables are allowed to be multiplied to any other variables, there
are no oil times oil terms. Hence, if we guess for the vinegar variables we are left
with a system of m linear equations in m variables. This has a high probability
of being invertible (and one can always guess again for the vinegar variables if it
is not). By composing with an affine transformation T : Fn → F

n one gets the
trapdoor function P = F ◦T . This is indeed a trapdoor as by composing with
T , the oil and vinegar shape of the polynomials is lost and they appear just
to be random. Thus for a oil and vinegar system the public key is P and the
private key is (F ,T ). To sign a document Y , one first computes F−1(Y ) = Z
by guessing the vinegar variables until F is an invertible linear system. Then
one computes T −1(Z) = W . One verifies that W is a signature for Y by noting
that P(W ) = Y .

Patarin originally proposed that the number of oil variables would equal the
number of vinegar variables. Hence the original scheme is now called Balanced
Oil and Vinegar. However, Balanced Oil Vinegar was broken by Kipnis and
Shamir using the method of invariant subspaces [27]. This attack, however, is
thwarted by making the number of vinegar variables sufficiently greater than
the number of oil variables. Generally this is between 2 and 4 times as many
vinegar variables to oil variables. Thus modern oil and vinegar schemes are called
Unbalanced Oil and Vinegar (UOV) The other major attack using the structure
of UOV is the Oil and Vinegar Reconciliation attack proposed by Ding et al.
However, with appropriate parameters this attack can be avoided as well [20].
UOV remains unbroken to this day, and offers competitive signing and verifying
times compared to other signatures schemes. Its main flaw is its rather large
key size. Thus there have been many modifications to UOV designed to reduce
the key size. One, due to Petzoldt, is to use a pseudo-random number generator
to generate large portions of the key from a smaller seed which is easier to
store [34]. Other schemes use the basic mathematical structure of UOV, but
modify it in a way to increase efficiency. However, any changes can generate
weakness for the system as can be seen from the first round contender of the
NIST competition HIMQ-3 [36] which was broken by the Singularity Attack from
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Ding et al. [21]. Two of the nine signature schemes left in the second round of the
competition are also based on UOV. Rainbow, originally proposed in 2005, gains
efficiency by forming multiple UOV layers where the oil variables in the previous
layers are the vinegar variables in the latter layers [20]. The other scheme first
proposed in [3] is Lifted Unbalanced Oil and Vinegar (LUOV) whose core idea
is to reduce its key size by selecting all the coefficients of its polynomials from
F2 = {0, 1}. However, LUOV signs its messages in some extension field F2r .
LUOV was attacked by Ding et al. using the Subfield Differential Attack (SDA)
in [22]. SDA uses the lifted form of the polynomials to always work in a smaller
field and thus increase efficiency of direct attacks (those which try to solve the
quadratic system outright) against LUOV. The authors of LUOV have amended
their parameters in order to prevent SDA. However, in this paper we will show
that LUOV is still vulnerable to a modified form of SDA which we will call the
Nested Subset Differential Attack (NSDA).

1.4 Lifted Unbalanced Oil and Vinegar (LUOV)

The LUOV, proposed in [3], is a UOV scheme with three main modifications.
Let F2r be an extension of F2, m and v be positive integers, and n = m + v.
The central maps F : F

n
2r → F

m
2r is a system of quadratic maps F (X) =

(F (1)(X), . . . , F (m)(X)) whose components are in oil and vinegar form

F (k)(X) =
v∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk.

The first modification is that each F (k) is “lifted,” meaning that the coef-
ficients are taken from the prime field F2. Messages are still taken over the
extension field, hence the name Lifted Unbalanced Oil Vinegar. The second mod-
ification is that the affine map T has the easier to store and computationally
faster to sign form [

1v T
0 1o

]
.

This was first proposed by Czypek [11]. This does not affect security as for
any given UOV private key (F ′,T ′) there is highly likely an equivalent private
key (F ,T ) where T is of the form above [41]. The third modification is that
LUOV uses Petzdolt’s method of generating the keys from a PRNG instead of
storing them directly [34].

1.5 Our Contributions

In this paper we will first present the original SDA and then NSDA which is
a modified version of the SDA attack which will defeat fully half of the new
parameter sets used by LUOV. These parameters will fall well short of their
targeted NIST security levels. We will also document an attack against one of
these parameters sets which we were able to perform in under 210 min. Our
attack does not rely on the oil and vinegar structure of LUOV, and can be seen
as a way to solve “lifted” polynomial equations in general.
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2 A Lemma on Random Maps

For both the Subfield Differential Attack and the Nested Subset Differential
Attack we will require a short lemma on random maps which, under the assump-
tion that quadratic systems of polynomials act like random maps, will allow us
to say when it is possible to forge signatures.

Lemma 1. Let A and B be two finite sets and Q : A → B be a random map.
For each b ∈ B, the probability that Q−1(b) is non-empty is approximately 1 −
e−|A|/|B|.

Proof. As the output of each element of A is independent, it is elementary that
the probability for there to be at least one a ∈ A such that Q(a) = b is

1 − Pr(Q(α) �= b,∀α ∈ A) = 1 −
∏

α∈A

Pr(Q(α) �= b)

= 1 −
(

1 − 1
|B|

)|A|
= 1 −

(
1 − 1

|B|
)|B| |A|

|B|
.

Using lim
n→∞

(
1 − 1

n

)n

= e−1, we achieve the desired result.

3 The Subfield Differential Attack

3.1 Transforming the Public Key into Better Form

In this section we recall the Subfield Differential Attack proposed in [22]. Let
P : F

n
2r → F

m
2r be a LUOV public key. Let X = (x1, . . . , xn) ∈ F

n
2r be an

indeterminate point. Then

P(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (1)(X) =
n∑

i=1

n∑

j=i

αi,j,1xixj +
n∑

i=1

βi,1xi + γ1

P (2)(X) =
n∑

i=1

n∑

j=i

αi,j,2xixj +
n∑

i=1

βi,2xi + γ2

...

P (m)(X) =
n∑

i=1

n∑

j=i

αi,j,mxixj +
n∑

i=1

βi,mxi + γm

where for each i, j, k we have αi,j,k, βi,k, γk ∈ F2. Due to this special structure
we are able to transform P to be over a subfield of F2r which, depending on the
parameters, will allow us to forge signatures.

First we recall for every positive integer d which divides r we may represent
F2r as a quotient ring

F2r
∼= F2d [t]/〈g(t)〉
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where g(t) is a irreducible degree s = r/d polynomial. For details see [28]. Let
X = (x1, . . . , xn) ∈ F

n
2d be an indeterminate point and X ′ = (x′

1, . . . , x
′
n) ∈ F

n
2r

be a random fixed point. So P̃(X) := P(X + X ′) : Fn
2d → F

m
2r . Further this

map is of a special form. Examining the kth component of P̃(X)

P̃ (k)(X) =
n∑

i=1

n∑

j=i

αi,j,k(xi + x′
i)(xj + x′

j) +
n∑

i=1

βi,k(xi + x′
i) + γk.

Expanding the above and separating the quadratic terms leads to

P̃ (k)(X) =
n∑

i=1

n∑

j=i

αi,j,k(x′
ixi + x′

jxj + x′
ix

′
j)

+
n∑

i=1

βi,k(xi + x′
i) + γk +

n∑

i=1

n∑

j=i

αi,j,kxixj .

We see that, due to αi,j,k ∈ F2, the coefficients of the quadratic terms xixj

are all in the prime field. However, as the x′
i are random elements from F2r , the

coefficients of the linear xi terms will contain all the powers of t up to s − 1.
This means that, by grouping by the various powers of t, we may rewrite P̃(X)
as

P̃(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃ (1)(X) =Q1(X) +
s−1∑

i=1

Li,1(X)ti

P̃ (2)(X) =Q2(X) +
s−1∑

i=1

Li,2(X)ti

...

P̃ (m)(X) =Qm(X) +
s−1∑

i=1

Li,m(X)ti

3.2 Forging a Signature

Now suppose we wanted to forge a signature for a message Y . First decompose
Y into the sum of vectors

Y = Y0 + Y1t + · · · + Ys−1t
s−1

where for each i, Yi = (yi,1, . . . , yi,m) ∈ F
m
2d .
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First one finds the solution space S for the system of linear equations

A =
{
Li,j(X) = yi,j : 1 ≤ i ≤ s − 1, 1 ≤ j ≤ m

}
.

As A is essentially a random system of linear equations, it will have a high
probability to be full rank (s − 1)m (or n if (s − 1)m ≥ n). So the dimension of
S will be

dim(S) = max{n − (s − 1)m, 0}.

Next, one tries to solve the system of m quadratic equations

B =
{
Qi(X) = y0,i : 1 ≤ i ≤ m,X ∈ S

}
.

If S is of large enough dimension, which depends on the choice of d, n, and m,
The solution X to B yields P̃ (X) = Y which implies that P(X + X ′) = Y .
Hence X + X ′ is the signature we seek. As the most costly step is solving the m
quadratic equations of B over F2d , we always choose d to be as small as possible
for the S to likely have a solution according to Lemma 1 where in this case the
domain is S and then range is F2d . Generally, the domain will be much larger
than the range for the attack and in this case we can assume that the probability
for success on the first try is 1, or the domain is smaller and then the attack will
fail as we almost never expect a solution to exist.

4 Nested Subset Differential Attack

4.1 The Change of Parameters for LUOV

In response to the Subfield Differential Attack, the authors of LUOV proposed
the size of the extension r should be made prime so that the only subfield will be
the prime field F2 [4]. They claim that given their new parameters, Fn

2 will be far
too small for a signature to exist for any given differential with any probability.
The new parameters are in Table 1. We note that they are for different NIST
security levels than before.

Table 1. The new parameter sets for LUOV

Name Security level (r,m, v, n)

LUOV-7-57-197 I (7, 57, 197, 254)

LUOV-7-83-283 III (7, 83, 283, 366)

LUOV-7-110-374 V (7, 110, 374, 484)

LUOV-47-42-182 I (47, 42, 182, 224)

LUOV-61-60-261 III (61, 60, 261, 321)

LUOV-79-76-341 V (79, 76, 341, 417)

Indeed, by Lemma 1 the Subfield Differential Attack will not work without
modification, but it is the claim of this paper that such a modification, which we
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will call the Nested Subset Differential Attack (NSDA), is indeed possible for the
three cases for which r = 7. In fact for the level I security level the complexity
will be brought into the range where the attack is not theoretical but possible
in practice in under 210 min as we will later show. This is due to the special
construction of lifted polynomials given by the following lemma.

4.2 A Lemma on Lifted Polynomials

Lemma 2. Let

f̃ (X) =
n∑

i=1

n∑

j=i

αi,jxixj +
n∑

i=1

βixi + γ

be a lifted polynomial and A0, A1, · · · , A�−1 ∈ F
n
2 with

Ai = (ai,1, · · · , ai,n) .

Set A = A0 + A1t + A2t
2 + · · · + A�−1t

�−1. We have that for f̃
(
A + Xt�

)
all

the quadratic terms are coefficients of t2�, the linear terms are coefficients of
t�, t�+1, · · · , t2�−1, and the coefficients of th depends only on αi,j , βi, and Ak for
k ≤ h and X for h ≥ �.

Proof. This follows from the following calculation and the fact that for each
i, j ∈ {1, . . . , n}, αi,j , βi ∈ F2.

f(A + Xt�) =
n∑

i=1

n∑

j=i

αi,j

(
�−1∑

k=0

ak,it
k + xit

�

) (
�−1∑

k=0

ak,jt
k + xjt

�

)

+
n∑

i=1

βi

(
�−1∑

k=0

ak,it
k + xit

�

)
+ γ

=
n∑

i=1

n∑

j=i

αi,j

(
xixjt

2� + xi

�−1∑

k=0

ak,jt
k+� + xj

�−1∑

k=0

ak,it
k+�

)

+
n∑

i=1

βixit
� +

n∑

i=1

n∑

j=i

αi,j

2�−2∑

h=0

⎛

⎜⎜⎝
∑

0≤k,k′≤�
k+k′=h

ak,iak′,jt
h

⎞

⎟⎟⎠

+
n∑

i=1

βi

(
�∑

k=0

ak,it
k

)
+ γ.

4.3 s-Truncation

It will also be convenient later to define the concept of s-truncation for an element
of the extension field. For 0 ≤ s ≤ r − 1, we define the s-truncation of a element

a =
r−1∑

i=0

ait
i to be as =

s∑

i=0

ait
i.
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Similarly for a polynomial

f(X) =
n∑

i=1

n∑

j=i

ai,jxixj +
n∑

i=1

bixi + c

we define the s-truncation to be term by term

f
s
(X) =

n∑

i=1

n∑

j=i

ai,j
sxixj +

n∑

i=1

bi
s
xi + cs.

Finally, for a system of polynomials

G (X) =
(
g1(X), g2(X), . . . , gm(X)

)

we define the s-truncation to by truncating each polynomial individually

G
s
(X) =

(
g1

s(X), g2s(X), . . . , gm
s(X)

)
.

4.4 The Attack

Let P : Fn
2r → F

m
2r be a LUOV public key with r = 7 and suppose we want to

forge a signature for a message Y ∈ F
m
2r . We will denote by X = (x1, . . . , xn) an

indeterminate in F
n
2 and decompose the message Y into the sum of vectors

Y = Y0 + Y1t + · · · + Yr−1t
r−1

where for each i, Yi = (yi,1, . . . , yi,m) ∈ F
m
2 .

Consider the set of polynomials in F2[t]/〈g(t)〉 which are truncated to the
third power

E :=
{
a3 : a ∈ F2r

}
.

Table 2 calculates the probability that there will exist a signature for Y in En

for the relevant parameters using Lemma 1. In this case the domain is En which
has a size of 24n and the range is F

m
27 which has a size of 27m. So in each case

the probability of success is 1 − exp(−24n/27m).

Table 2. Probability that a signature exists in En

Name Probability

LUOV-7-57-197 1 − exp(−2617)

LUOV-7-83-283 1 − exp(−2883)

LUOV-7-110-374 1 − exp(−22366)

We thus see that it is very likely that we need to only consider signatures
from En when we attempt to forge. Similar to SDA’s usage of the differential
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X ′ to transform the direct attack into solving equations over a subfield, we do
not need to look over all of En at once but can instead construct a signature
piece by piece using differentials. However, instead of choosing the differentials
randomly, we will instead solve for them in such a manner that will eventually
construct a signature. For our attack to be efficient, we will want to always solve
no more than m quadratic equations over F2 with at least as many variables as
equations. This can be done in four steps using Lemma 2.

First we see that

P
0
(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q0,1(X)

Q0,2(X)
...

Q0,m(X)

where each Q0,i(X) is a quadratic polynomial over F2. So we may solve the
system of m equations in n variables P

0
(X) = Y0 using a direct attack method

like exhaustive search [6], a variant of XL (eXtended Linerization) [10], or a
Gröbner Basis method like F4 [24]. We will forestall discussion of which algorithm
to use until Sect. 4.6. Let us call the solution we found A0.

For the second step, let us examine P
1
(A0 + Xt). By the definition of s-

truncation, this will be a system of polynomials of degree at most 1 in t. Following
from Lemma 2, the coefficients of the t1 terms will be linear in the variables
X. Furthermore, the coefficients of the t0 terms will depend only on A0. As
P

0
(A0) = Y0, we see that

P
1
(A0 + Xt) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y0,1 + L1,1(X)t

y0,2 + L1,2(X)t
...

y0,m + L1,m(X)t

where each L1,i(X) is a linear polynomial over F2 in the variables X. Now find
a solution A1 to the system of linear equations

{
L1.i(X) = y1,i : 1 ≤ i ≤ m

}
.

Then we have P
1
(A0 + A1t) = Y0 + Y1t.

For the third step, examine P
2
(A0 +A1t+Xt2). Again the s-truncation will

make this a system of polynomials of degree 2 in t. Lemma 2 states that the
coefficients of the t2 terms will be linear in the variables X. The coefficients of
the t0 terms will depend only on A0, and the coefficients of the t1 will depend
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only on A0 and A1. But by construction of A0 and A1 we see that

P
2
(A0 + A1t + Xt2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y0,1 + y1,1t + L2,1(X)t2

y0,2 + y1,2t + L2,2(X)t2

...

y0,m + y1,mt + L2,m(X)t2

where each L2,i(X) is a linear polynomial over F2 in the variables X. Again find
a solution A2 to the system of linear equations

{
L2.i(X) = y2,i : 1 ≤ i ≤ m

}
.

Then we have P
2
(A0 + A1t + A2t

2) = Y0 + Y1t + Y2t
2.

As a final step, we drop the need for s-truncation and look at P(A0 +A1t+
A2t

2 + Xt3). We note that this will be a system of polynomials of degree 6 in t,
the highest degree for polynomials in F2[t]/〈g(t)〉 as r = 7. Further, by Lemma
2, only the coefficients of the t6 terms will be quadratic in X. The coefficients
of the t3, t4 and t5 terms will be linear in X. Finally, the coefficients of the t0,
t1, t2 terms depend only on A0, A0 and A1, and A0 A1 and A2 respectively. Let
A = A0 + A1t + A2t

2. By construction of A0, A1, and A2 we see that

P(A + Xt3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0,1 + y1,1t + y2,1t
2 + L3,1(X)t3 + L4,1(X)t4

+ L5,1(X)t5 + Q6,1(X)t6

y0,2 + y1,2t + y2,2t
2 + L3,2(X)t3 + L4,2(X)t4

+ L5,2(X)t5 + Q6,2(X)t6

...

y0,m + y1,mt + y2,mt2 + L3,m(X)t3 + L4,m(X)t4

+ L5,m(X)t5 + Q6,m(X)t6

Now we proceed largely in the same manner as the last step in the SDA
attack. Find the solution space S for the system of linear equations

A =
{
Li,j(X) = yi,j : 3 ≤ i ≤ 5, 1 ≤ j ≤ m

}
.

As A will most likely be full rank 3m, the dimension of S will have high proba-
bility of being n − 3m. Thus, the system of m quadratic equations

B =
{
Q6,j(X) = y6,j : 1 ≤ j ≤ m,X ∈ S

}

has a high probability of having a solution given the parameter sets of LUOV
which we record in Table 3. Again, we used Lemma 1 with the domain being
S which has size 2n−3m, and the range being F

m
2 which has size 2m. So the

probability of success is 1 − exp(−2n−4m).
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Table 3. Probability of success for NSDA

Name Probability

LUOV-7-57-197 1 − exp(−226)

LUOV-7-83-283 1 − exp(−234)

LUOV-7-110-374 1 − exp(−2344)

Find a solution A3 to B. Then we see that

P(A0 + A1t + A2t
2 + A3t

3) = Y

and thus σ = A0 + A1t + A2t
2 + A3t

3 is a forged signature for Y .
Note that in each case we assumed that it was possible to find the solutions Ai

for the various systems. The last quadratic system is when this is most unlikely,
and still we see that the odds are overwhelmingly in our favor for the parameter
sets we attacked for the solutions to exist assuming that polynomial systems act
as random maps. Thus, we may ignore the potential that a solution does not
exist in our attack for any step, and even if that were the case one can always
go back a previous step for a different solution and try again.

For the different parameter sets this is no longer so. They use a larger value
for r, which means that the number of linear equations to solve along side the
final quadratic system also increases to the point where we no longer expect a
final solution to exist. This bring into question when LUOV is safe from SDA
and NSDA, which depends on the relationship between n,m, r, and any factors d
of r, but is still competitive. This is beyond the scope of this paper, and further
work will need to be done to see the exact value of the lifting modification.

4.5 Hiding the Signature

It might be argued that signatures that come from En are in a very special
shape and thus can be rejected as obviously forged. However, it is possible to
hide the shape of the signatures generated from the NSDA attack. Due to the
special shape of the lifted polynomials, it is possible to know about preimages
of a more generic form which are connected to the preimages we can find. Let
P be a LUOV public key so that

P(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (1)(X) =
n∑

i=1

n∑

j=i

αi,j,1xixj +
n∑

i=1

βi,1xi + γ1

P (2)(X) =
n∑

i=1

n∑

j=i

αi,j,2xixj +
n∑

i=1

βi,2xi + γ2

P (m)(X) =
n∑

i=1

n∑

j=i

αi,j,mxixj +
n∑

i=1

βi,mxi + γm
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Suppose we wanted to forge a signature for a message Y = (y1, . . . , ym) ∈ F
m
2r .

As we are in a finite field of characteristic 2, we may take square roots of any
element. For some natural number N , define a vector Z = (z1, . . . , zm) = Y 1/2N

by which we mean that, for each i, zi = y
1/2N

i the 2N th root of yi. Now let
X = (x1, . . . , xn) ∈ En be a signature for Z so that P(X) = Z. Define X2N =
(x2N

i , . . . , x2N

n ). Let us recall the freshman’s dream.

Theorem 1 (Freshman’s Dream). If F is a field of characteristic p then for
any natural number N and elements x, y ∈ F we have (x + y)pN

= xpN

+ xpN

.

Then examining the kth component of P(X2N ) we see that due to the fresh-
man’s dream and the fact that the coefficients of P are in F2

P (k)(X2N ) =
n∑

i=1

n∑

j=i

αi,j,kx2N

i x2N

j +
n∑

i=1

βi,kx2N

i + γk

=

⎛

⎝
n∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γ1

⎞

⎠
2N

= z2
N

k = yk.

As the elements of X are degree three polynomials in F2[t]/〈g(t)〉, X2N ’s
elements will appear to be generic degree six polynomials. Now, the signature
can still be seen by checking the 2N th roots for each N less than r, but this
procedure still masks the forged signature from against lazy implementations of
the verification process.

4.6 Complexity

The complexity of our attack is determined by solving the two quadratic systems
of m equations over F2. The overhead from solving the linear systems we may
ignore as the size of the linear systems is always not much larger than the
quadratic systems, and linear systems are much more efficient to solve.

Let us take a system P =
(
P (1)(X), . . . , P (m)(X)

)
of m quadratic equations

in n variables over F2 and attempt to find a solution. The best method in our
case given the small field size and the limited number of variables we will have
is exhaustive search. In our practical experiment on LUOV-7-57-197, we used a
variant of the “forcepq fpga” algorithm [5,6], so this algorithm is how we will
estimate the complexity of solving the system. We will give a brief sketch of the
main idea here.

We will denote the solution set of the first k equations as

Z� = {A ∈ F2 | P (i)(A) = 0, 1 ≤ i ≤ �}.
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For some well chosen �, the algorithm first utilizes Grey-code and partial deriva-
tives to find Z� by solving the first � equations individually. We begin by ordering
the elements of F2 according to a Grey-code order A1, A2, . . . , A2n . This means
that for an element As ∈ F

n
2 , As+1 will only have one component different than

As. The authors of [5] noticed that, as we are working under F2 and if As+1

differs from As only at the ith component

P (k)(As+1) = P (k)(As) +
∂P (k)

∂xi
(As+1).

As the partial derivative is one degree smaller, it is more efficient to evaluate.
It was also found that this trick can be used recursively for evaluating the first
partial derivatives utilizing the second partial derivatives.

Notice, though, that Z� is no longer in Gray-code order as it is essentially
a random subset of F

n
2 . Thus, it is not possible to fully utilize the Gray-code

method to compute Z�+1 from Z�. One would have to add multiple evaluations
of different partial derivatives, one for each change in component, when selecting
the next element of Z�. This was only found to be twice as efficient as simply
evaluating the original equations in view of finding Zm at the very end.

It was estimated in [5] that the number of bit operations for finding all the
solutions would be log2(n)2n+2 for a determined system (n = m) with an optimal
value of � = 1 + log2(n). We will use this estimate on determined systems as
for the cases we consider we will have more variables than equations. As we
only need one solution we can randomly assign values until the system is either
determined or only slightly underdetermined (n > m) if we want a solution on
the first attempt. In our experiment we guessed for all but m+2 of the variables
to assure a solution first try, so we will do likewise in our estimate.

We will note though that if n is multiple times the size of m, we can first
use the method of Thomae and Wolf [40], which is an improvement of the work
of the Kipnis, Patarin, and Goubin [26], to reduce the number of variables and
equations. While we will not go into the details of the method in this paper,
the core idea is to make the random system act as if that is was at least partly
an oil and vinegar system. By this we mean we attempt to find some linear
transformation of the variables S such that P ◦S has a set of vinegar variables
V and a set of oil variables O. The result is part of the resulting system is linear
in the oil variables after fixing the vinegar variables. As we are in characteristic
2, square terms act linearly. Thus, we search for S to set each O ×O coefficient
αi,j,k = 0 for i �= j. Thomae and Wolf showed that this process can be done
solving a relatively small system of linear equations. The statement of their result
is as follows.

Theorem 2 (Thomae and Wolf). By a linear change of variables, the com-
plexity of solving an under-determined quadratic system of m equations and
n = ωm variables can be reduced to solving a determined quadratic system of
m − �ω
 + 1 equations. Furthermore, provided �ω
|m the complexity can be fur-
ther reduced to the complexity of solving a determined quadratic system of m−�ω

equations [40].
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In Table 4 we compute the complexity for solving the final quadratic system.
This will be the most complex part of the attack as we had to first solve a
linear system. We will have approximately n − 3m variables and m equations.
We note that as (n − 3m)/m < 2 in each case, Thomae and Wolf’s method will
not apply. We will guess all but m + 2 variables and estimate the complexity as
log2(m + 2)2m+4.

Table 4. Complexity in terms of number of bit operations

Name log2 NSDA’s complexity (NIST Requirement)

LUOV-7-57-197 61 (143)

LUOV-7-83-283 89 (207)

LUOV-7-110-374 116 (272)

As the classical log2 classical gate operations for NIST security level I is 143,
III is 207, and V is 272 [31], we see that LUOV falls short in every category
for these parameters. Moreover, the actual complexity for NSDA is possible in
practice as we show with experimental results in Sect. 4.7.

Before we continue, we will mention that if the subfield over which we solved
had been larger, or if the number of variables to guess for had been too great,
then exhaustive search would not be the optimal choice for the solver for the
quadratic systems. Generally, after applying the method of Thomae and Wolf,
either XL [10] with the Block Wiedemann Algorithm [9] or the F4 algorithm by
Faugère [24] is the preferred choice for such systems using a hybrid method [2]
(meaning guessing a certain number of variables before applying the mentioned
algorithms). The complexity of both algorithms relies on solving/reducing very
large, sparse Macaulay matrices. Roughly, the highest degree found in XL is
denoted by D0 (called the operating degree), and the highest degree in F4 is
Dreg (called the degree of regularity [14,15,19,23]). Yeh et al. [42] have shown
that for the resulting overdetermined systems after using the hybrid method,
0 ≤ D0 − Dreg ≤ 1 and often D0 = Dreg. So the matrices are roughly the same
size, but XL is sparser and is thus the preferred method to use. Please see [42]
for full details.

4.7 Experimental Results

We have performed practical experiments on the LUOV parameter set LUOV-
7-57-197.

For the hardware, we used a field-programmable gates array cluster from Sci-
engines, a “Rivyera S6-LX150” with 64 Xilinx Spartan 6 LX150 FPGAs chips.
The LX150 were so named because each contains nearly “150,000 gate equiv-
alent units”. They were driven on 8 PCI express cards in a chassis containing
a Supermicro motherboard, an Intel Xeon(R) CPU (E3-1230 V2). When new
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in 2012, the machine cost 55,000 EUR. Although not directly comparable, a
machine with current FPGAs costing the same 55,000 EUR today will probably
have at least 2× as much computing power and cost less in electricity.

We use a variant of the “forcepq fpga” algorithm from the paper [6], using
the input format of the Fukuoka MQ Challenge. We processed the early parts
of our LUOV attack using the computer algebra system Magma and output the
resulting system in this format, which is basically binary quadratic systems with
zero-one coefficients lined up in graded reverse lexicographic order.

The “forcemp fpga” implementation allows us to test 210 input vectors per
cycle (at 200 MHz) per FPGA chip. In general this lets us solve a 48 × 48 MQ
system in a maximum of slightly less than 23 min using one single chip, or find
a solution to n × m quadratic equations, where n ≥ m, in 2m−48 × 23 min. We
could accelerate this somewhat if we can implement a variation of the Joux-Vitse
algorithm.

For a 55-equation system, using all 64 FPGAs, the maximum is 46 min. In
general it is a little shorter. The expectation is half of that or 23 min. For a 57-
equation system, it is 4 times that, hence about 3 h, expectation is about half of
that or 92 min. When we solved the 59-variable, 57-equation system in practice,
the run ended after 105 min. This, like all our runs in this experiment, happened
to be slightly unlucky.

As there are two quadratic systems to solve, we can forge a signature in under
210 min.

5 Inapplicability to Non-lifted Schemes

Before we conclude, lets discuss why NSDA or any similar attack does not work
on UOV [33], Rainbow [18], or any other multivariate scheme which does not use
the lifting modification. In these schemes, though some coefficients in the central
map are forced to be 0 (like the oil × oil coefficients in UOV and Rainbow) to
allow efficient pre-image finding, most of the coefficients in the central maps are
taken randomly from a finite field Fq. Thus, in the public key P : Fn

q → F
m
q all of

the coefficients are seemingly random elements of Fq. This makes any differential
we add seemingly mixed randomly.

To be explicit, Let us assume that Fq contains a subfield Fq′ so that Fq
∼=

Fq′ [t]/〈g(t)〉 where deg(g) = s. We will assume that Fq′ is to small to find pre-
images in. Let X = (x1, . . . , xn) be an indeterminate point in F

n
q′ , f(t) ∈ Fq′ [t]

(say f(t) = t like in NSDA), and A = (a1, . . . , an) be a fixed point (whether in
a special form like in NSDA or not). Let P̃(X) := P(A + Xf(t)). Similar to
the SDA section we find that in the kth component of P̃
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P̃ (k)(X) =
n∑

i=1

n∑

j=i

αi,j,k(ajxif(t) + aixjf(t) + aiaj)

+
n∑

i=1

βi,k(xif(t) + ai) + γk +
n∑

i=1

n∑

j=i

αi,j,kxixjf(t)2.

Note that there are no restrictions on the coefficients, αi,j,k, βi,k and γk as
they are random elements from Fqr . The quadratic terms’ coefficients will contain
powers of t from t0 to ts−1. Hence, we are trading one random quadratic system
P which F

n
q′ is too small to find pre-images in for another equally random

quadratic system P̃ which F
n
q′ is still too small. So, NSDA is inapplicable to

non-lifted systems.

6 Conclusion

We have proposed a modified version of the Subfield Differential Attack called
Nested Subset Differential Attack which fully breaks half the parameters set for-
ward by the round 2 version of Lifted Unbalanced Oil and Vinegar. We reduced
attacking these parameters sets to the problem of solving quadratic equations
over the prime field F2. This makes our attack effective enough to be performed
practically. As our attack did not use the Unbalanced Oil and Vinegar Structure
of LUOV, it can be seen as a method of solving lifted quadratic systems in gen-
eral. We feel that more research into solving these types of quadratic systems
using the NSDA attack is needed. We also performed experimental attacks on
actual LUOV parameters and were able to forge a signature in under 210 min.
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